3.141 \(\int \frac {(d+e x)^{3/2} (a+b \log (c x^n))}{x} \, dx\)

Optimal. Leaf size=255 \[ -2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )-2 b d^{3/2} n \text {Li}_2\left (1-\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )+2 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2+\frac {16}{3} b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )-4 b d^{3/2} n \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )-\frac {4}{9} b n (d+e x)^{3/2}-\frac {16}{3} b d n \sqrt {d+e x} \]

[Out]

-4/9*b*n*(e*x+d)^(3/2)+16/3*b*d^(3/2)*n*arctanh((e*x+d)^(1/2)/d^(1/2))+2*b*d^(3/2)*n*arctanh((e*x+d)^(1/2)/d^(
1/2))^2+2/3*(e*x+d)^(3/2)*(a+b*ln(c*x^n))-2*d^(3/2)*arctanh((e*x+d)^(1/2)/d^(1/2))*(a+b*ln(c*x^n))-4*b*d^(3/2)
*n*arctanh((e*x+d)^(1/2)/d^(1/2))*ln(2*d^(1/2)/(d^(1/2)-(e*x+d)^(1/2)))-2*b*d^(3/2)*n*polylog(2,1-2*d^(1/2)/(d
^(1/2)-(e*x+d)^(1/2)))-16/3*b*d*n*(e*x+d)^(1/2)+2*d*(a+b*ln(c*x^n))*(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.46, antiderivative size = 255, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 11, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {2346, 63, 208, 2348, 12, 5984, 5918, 2402, 2315, 2319, 50} \[ -2 b d^{3/2} n \text {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )-2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )+2 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2+\frac {16}{3} b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )-4 b d^{3/2} n \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )-\frac {4}{9} b n (d+e x)^{3/2}-\frac {16}{3} b d n \sqrt {d+e x} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^(3/2)*(a + b*Log[c*x^n]))/x,x]

[Out]

(-16*b*d*n*Sqrt[d + e*x])/3 - (4*b*n*(d + e*x)^(3/2))/9 + (16*b*d^(3/2)*n*ArcTanh[Sqrt[d + e*x]/Sqrt[d]])/3 +
2*b*d^(3/2)*n*ArcTanh[Sqrt[d + e*x]/Sqrt[d]]^2 + 2*d*Sqrt[d + e*x]*(a + b*Log[c*x^n]) + (2*(d + e*x)^(3/2)*(a
+ b*Log[c*x^n]))/3 - 2*d^(3/2)*ArcTanh[Sqrt[d + e*x]/Sqrt[d]]*(a + b*Log[c*x^n]) - 4*b*d^(3/2)*n*ArcTanh[Sqrt[
d + e*x]/Sqrt[d]]*Log[(2*Sqrt[d])/(Sqrt[d] - Sqrt[d + e*x])] - 2*b*d^(3/2)*n*PolyLog[2, 1 - (2*Sqrt[d])/(Sqrt[
d] - Sqrt[d + e*x])]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rule 2319

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[((d + e*x)^(q + 1
)*(a + b*Log[c*x^n])^p)/(e*(q + 1)), x] - Dist[(b*n*p)/(e*(q + 1)), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2346

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.))/(x_), x_Symbol] :> Dist[d, Int[((d
 + e*x)^(q - 1)*(a + b*Log[c*x^n])^p)/x, x], x] + Dist[e, Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x], x] /
; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q]

Rule 2348

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.))/(x_), x_Symbol] :> With[{u = IntHi
de[(d + e*x^r)^q/x, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[Dist[1/x, u, x], x], x]] /; FreeQ[{a, b
, c, d, e, n, r}, x] && IntegerQ[q - 1/2]

Rule 2402

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> -Dist[e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 5918

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[((a + b*ArcTanh[c*x])^p*
Log[2/(1 + (e*x)/d)])/e, x] + Dist[(b*c*p)/e, Int[((a + b*ArcTanh[c*x])^(p - 1)*Log[2/(1 + (e*x)/d)])/(1 - c^2
*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 5984

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x} \, dx &=d \int \frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{x} \, dx+e \int \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right ) \, dx\\ &=\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )+d^2 \int \frac {a+b \log \left (c x^n\right )}{x \sqrt {d+e x}} \, dx+(d e) \int \frac {a+b \log \left (c x^n\right )}{\sqrt {d+e x}} \, dx-\frac {1}{3} (2 b n) \int \frac {(d+e x)^{3/2}}{x} \, dx\\ &=-\frac {4}{9} b n (d+e x)^{3/2}+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )-2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )-\frac {1}{3} (2 b d n) \int \frac {\sqrt {d+e x}}{x} \, dx-(2 b d n) \int \frac {\sqrt {d+e x}}{x} \, dx-\left (b d^2 n\right ) \int -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{\sqrt {d} x} \, dx\\ &=-\frac {16}{3} b d n \sqrt {d+e x}-\frac {4}{9} b n (d+e x)^{3/2}+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )-2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )+\left (2 b d^{3/2} n\right ) \int \frac {\tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{x} \, dx-\frac {1}{3} \left (2 b d^2 n\right ) \int \frac {1}{x \sqrt {d+e x}} \, dx-\left (2 b d^2 n\right ) \int \frac {1}{x \sqrt {d+e x}} \, dx\\ &=-\frac {16}{3} b d n \sqrt {d+e x}-\frac {4}{9} b n (d+e x)^{3/2}+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )-2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )+\left (4 b d^{3/2} n\right ) \operatorname {Subst}\left (\int \frac {x \tanh ^{-1}\left (\frac {x}{\sqrt {d}}\right )}{-d+x^2} \, dx,x,\sqrt {d+e x}\right )-\frac {\left (4 b d^2 n\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {d}{e}+\frac {x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{3 e}-\frac {\left (4 b d^2 n\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {d}{e}+\frac {x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{e}\\ &=-\frac {16}{3} b d n \sqrt {d+e x}-\frac {4}{9} b n (d+e x)^{3/2}+\frac {16}{3} b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )+2 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )-2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )-(4 b d n) \operatorname {Subst}\left (\int \frac {\tanh ^{-1}\left (\frac {x}{\sqrt {d}}\right )}{1-\frac {x}{\sqrt {d}}} \, dx,x,\sqrt {d+e x}\right )\\ &=-\frac {16}{3} b d n \sqrt {d+e x}-\frac {4}{9} b n (d+e x)^{3/2}+\frac {16}{3} b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )+2 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )-2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )-4 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )+(4 b d n) \operatorname {Subst}\left (\int \frac {\log \left (\frac {2}{1-\frac {x}{\sqrt {d}}}\right )}{1-\frac {x^2}{d}} \, dx,x,\sqrt {d+e x}\right )\\ &=-\frac {16}{3} b d n \sqrt {d+e x}-\frac {4}{9} b n (d+e x)^{3/2}+\frac {16}{3} b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )+2 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )-2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )-4 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )-\left (4 b d^{3/2} n\right ) \operatorname {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1-\frac {\sqrt {d+e x}}{\sqrt {d}}}\right )\\ &=-\frac {16}{3} b d n \sqrt {d+e x}-\frac {4}{9} b n (d+e x)^{3/2}+\frac {16}{3} b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )+2 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2+2 d \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )-2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )-4 b d^{3/2} n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )-2 b d^{3/2} n \text {Li}_2\left (1-\frac {2}{1-\frac {\sqrt {d+e x}}{\sqrt {d}}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 375, normalized size = 1.47 \[ d^{3/2} \log \left (\sqrt {d}-\sqrt {d+e x}\right ) \left (a+b \log \left (c x^n\right )\right )-d^{3/2} \log \left (\sqrt {d+e x}+\sqrt {d}\right ) \left (a+b \log \left (c x^n\right )\right )+\frac {2}{3} (d+e x)^{3/2} \left (a+b \log \left (c x^n\right )\right )+2 a d \sqrt {d+e x}+2 b d \sqrt {d+e x} \log \left (c x^n\right )-\frac {1}{2} b d^{3/2} n \left (2 \text {Li}_2\left (\frac {1}{2}-\frac {\sqrt {d+e x}}{2 \sqrt {d}}\right )+\log \left (\sqrt {d}-\sqrt {d+e x}\right ) \left (\log \left (\sqrt {d}-\sqrt {d+e x}\right )+2 \log \left (\frac {1}{2} \left (\frac {\sqrt {d+e x}}{\sqrt {d}}+1\right )\right )\right )\right )+\frac {1}{2} b d^{3/2} n \left (2 \text {Li}_2\left (\frac {1}{2} \left (\frac {\sqrt {d+e x}}{\sqrt {d}}+1\right )\right )+\log \left (\sqrt {d+e x}+\sqrt {d}\right ) \left (\log \left (\sqrt {d+e x}+\sqrt {d}\right )+2 \log \left (\frac {1}{2}-\frac {\sqrt {d+e x}}{2 \sqrt {d}}\right )\right )\right )-\frac {4}{9} b n (d+e x)^{3/2}+\frac {16}{3} b d n \left (\sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )-\sqrt {d+e x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^(3/2)*(a + b*Log[c*x^n]))/x,x]

[Out]

2*a*d*Sqrt[d + e*x] - (4*b*n*(d + e*x)^(3/2))/9 + (16*b*d*n*(-Sqrt[d + e*x] + Sqrt[d]*ArcTanh[Sqrt[d + e*x]/Sq
rt[d]]))/3 + 2*b*d*Sqrt[d + e*x]*Log[c*x^n] + (2*(d + e*x)^(3/2)*(a + b*Log[c*x^n]))/3 + d^(3/2)*(a + b*Log[c*
x^n])*Log[Sqrt[d] - Sqrt[d + e*x]] - d^(3/2)*(a + b*Log[c*x^n])*Log[Sqrt[d] + Sqrt[d + e*x]] - (b*d^(3/2)*n*(L
og[Sqrt[d] - Sqrt[d + e*x]]*(Log[Sqrt[d] - Sqrt[d + e*x]] + 2*Log[(1 + Sqrt[d + e*x]/Sqrt[d])/2]) + 2*PolyLog[
2, 1/2 - Sqrt[d + e*x]/(2*Sqrt[d])]))/2 + (b*d^(3/2)*n*(Log[Sqrt[d] + Sqrt[d + e*x]]*(Log[Sqrt[d] + Sqrt[d + e
*x]] + 2*Log[1/2 - Sqrt[d + e*x]/(2*Sqrt[d])]) + 2*PolyLog[2, (1 + Sqrt[d + e*x]/Sqrt[d])/2]))/2

________________________________________________________________________________________

fricas [F]  time = 0.42, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b e x + b d\right )} \sqrt {e x + d} \log \left (c x^{n}\right ) + {\left (a e x + a d\right )} \sqrt {e x + d}}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(a+b*log(c*x^n))/x,x, algorithm="fricas")

[Out]

integral(((b*e*x + b*d)*sqrt(e*x + d)*log(c*x^n) + (a*e*x + a*d)*sqrt(e*x + d))/x, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )}^{\frac {3}{2}} {\left (b \log \left (c x^{n}\right ) + a\right )}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(a+b*log(c*x^n))/x,x, algorithm="giac")

[Out]

integrate((e*x + d)^(3/2)*(b*log(c*x^n) + a)/x, x)

________________________________________________________________________________________

maple [F]  time = 0.36, size = 0, normalized size = 0.00 \[ \int \frac {\left (e x +d \right )^{\frac {3}{2}} \left (b \ln \left (c \,x^{n}\right )+a \right )}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)*(b*ln(c*x^n)+a)/x,x)

[Out]

int((e*x+d)^(3/2)*(b*ln(c*x^n)+a)/x,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{3} \, {\left (3 \, d^{\frac {3}{2}} \log \left (\frac {\sqrt {e x + d} - \sqrt {d}}{\sqrt {e x + d} + \sqrt {d}}\right ) + 2 \, {\left (e x + d\right )}^{\frac {3}{2}} + 6 \, \sqrt {e x + d} d\right )} a + b \int \frac {{\left (e x \log \relax (c) + d \log \relax (c) + {\left (e x + d\right )} \log \left (x^{n}\right )\right )} \sqrt {e x + d}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(a+b*log(c*x^n))/x,x, algorithm="maxima")

[Out]

1/3*(3*d^(3/2)*log((sqrt(e*x + d) - sqrt(d))/(sqrt(e*x + d) + sqrt(d))) + 2*(e*x + d)^(3/2) + 6*sqrt(e*x + d)*
d)*a + b*integrate((e*x*log(c) + d*log(c) + (e*x + d)*log(x^n))*sqrt(e*x + d)/x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (a+b\,\ln \left (c\,x^n\right )\right )\,{\left (d+e\,x\right )}^{3/2}}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*log(c*x^n))*(d + e*x)^(3/2))/x,x)

[Out]

int(((a + b*log(c*x^n))*(d + e*x)^(3/2))/x, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)*(a+b*ln(c*x**n))/x,x)

[Out]

Timed out

________________________________________________________________________________________